ar X iv : h ep - t h / 96 11 00 5 v 1 1 N ov 1 99 6 SU ( N ) Matrix Difference Equations and a Nested Bethe Ansatz

نویسنده

  • A. Zapletal
چکیده

A system of SU(N)-matrix difference equations is solved by means of a nested version of a generalized Bethe Ansatz, also called ”off shell” Bethe Ansatz [1]. The highest weight property of the solutions is proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

/ 96 11 00 6 v 1 1 N ov 1 99 6 U ( N ) Matrix Difference Equations and a Nested Bethe Ansatz

A system of U(N)-matrix difference equations is solved by means of a nested version of a generalized Bethe Ansatz. The highest weight property of the solutions is proved and some examples of solutions are calculated explicitly.

متن کامل

ar X iv : h ep - t h / 92 11 12 4 v 1 2 6 N ov 1 99 2 Chiral Symmetry Breaking with the Curtis - Pennington Vertex

We study chiral symmetry breaking in quenched QED 4 , using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical coupling and to estimate its value. The main results are in qualitative agreement with the ladder approximation, the numerical changes being minor.

متن کامل

ar X iv : h ep - t h / 96 11 22 6 v 1 2 7 N ov 1 99 6 On the relations between osp ( 2 , 2 ) and the quasi exactly solvable systems

By taking a product of two sl(2) representations, we obtain the differential operators preserving some space of polynomials in two variables. This allows us to construct the representations of osp(2,2) in terms of matrix differential operators in two variables. The corresponding operators provide the building blocks for the construction of quasi exactly solvable systems of two and four equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008